INTEGRATION ISSUES

JUNE 3, 1999
PIXEL MECHANICS PRAGUE
E. ANDERSSEN, LBNL/CERN

PROPOSALS FOR APPROVAL THIS SUMMER

- ASSEMBLY OF B-LAYER USING RAILS IN PIXEL DETECTOR AND FORWARD
 - Proposal
 - MATERIAL IMPLICATIONS
 - STRUCTURAL IMPLICATIONS
- SERVICES OUT ONE SIDE-MAKES INSTALLATION EASIER
 - PROPOSAL AND VARIATIONS
 - MATERIAL IMPLICATIONS
 - TRADE OFF AGAINST COOL-ABILITY AND VOLTAGE DROP
- THERMAL BARRIER THROUGH PIXEL VOLUME
 - DESCRIPTION OF PROBLEM
 - PROPOSAL
 - BENEFITS
 - Risks
- Forces from Services
 - COOLING PIPES/CABLES
 - STRAIN RELIEF TO INNER DETECTOR INTEGRATION STRUCTURE
- SCT INTERFACE
 - DOCUMENT IN PROGRESS WITH ERIC PERRIN
 - LOOKING AT COMMON ASSEMBLY TOOLING WITH SCT
 - ASSEMBLY SCENARIO INFLUENCES DESIGN OF SUPPORTS

PROPOSAL TO INSTALL RAILS IN PIXEL DETECTOR

- EXPLANATION FOR PROPOSAL
- ROUGH INSTALLATION SCENARIO
 - BRIEF OVERVIEW ONLY
- SUGGESTED SUPPORT LOCATIONS OF RAILS
 - RAIL SECTIONS
 - SERVICE ROUTING AND SUPPORTS
- Loading profile for Rails
 - Installation Loads
 - LOADS IN OPERATION
- CROSS SECTION AND MASS ESTIMATE
 - DEFLECTION ANALYSIS ASSUMPTIONS
 - Cross-Section of Rails + Material Estimate

REASONING FOR NEW INSTALLATION SCENARIO

- Installation and removal of tooling presents a risk of damage each time it is done-Tooling which must penetrate Pixel Volume from 3M away inserted through and close to Layer 1
- PERMANENT RAILS WITHIN PIXEL VOLUME ALLOWS FOR ACCURATE ALIGNMENT OF RAILS RELATIVE TO MOUNT FEATURES
- PERMANENT RAILS REDUCE THE INSTALLATION TIME MINIMIZING WARM TIME
- OLD INSTALLATION SCENARIO REQUIRED TOOLING MARGINALLY
 CONSISTENT WITH OVERALL CONSTRAINTS, EXPENSIVE, RISKY AND TIME
 CONSUMING-EFFORT WAS BETTER SPENT ADJUSTING CONSTRAINTS
- IMPACT ON NEIGHBORING SYSTEMS IS MINIMIZED REDUCING TIME CONSTANT FOR PROGRESS, DECOUPLING SCHEDULES
- SERVICES OUT BOTH SIDES REQUIRES AMAZING EFFORT TO ACHIEVE, MAKES HANDLING OF B-LAYER DURING ASSEMBLY VERY UNWIELDY, REQUIRES SPECIAL TOOLING TO EXPAND SERVICES AFTER PASSING THROUGH DETECTOR

INSTALLATION

- DETECTOR WARMED UP, AIR PURGED
- THERMAL BARRIER OPENED, RAILS INSTALLED
- B-Layer sans Services attached to rails
- SERVICES ATTACHED TO SUPPORTS
- Services terminated to B-Layer
- WHOLE RIG PUSHED IN UNTIL LOAD TRANSFERRED TO SUPPORT STRUCTURE(S)
- RAILS REMOVED
- Services Terminated to PPF'

- INSTALLATION RAILS ARE EASILY SUPPORTED AT ENDS OF SCT FORWARD, BUT NOT MIDDLE
- B-LAYER HUNG FROM TOP GUIDED BY BOTTOM-SIMILAR TO ALEPH INSTALLATION
- SERVICES EITHER PERMANENTLY SUPPORTED BY RAIL IN FORWARD REGION OR SUPPORTS MUST BE PROVIDED BY SCT
- RAIL IN FORWARD IS EQUIVALENT TO 25MM TUBE WITH 1 MM WALL
- RAIL IN PIXEL IS EQUIVALENT TO 20MM TUBE WITH 0.5MM WALL

SUPPORT CONDITION CHANGE

- OLD SUPPORT CONDITION WAS OVER CONSTRAINED IS *VERY* OVER CONSTRAINED IF SHELLS ARE FASTENED TOGETHER
- ALIGNMENT FROM END TO END IN BOTH PHI AND XY OF ALL MOUNTING POINTS WAS NECESSARY FOR MOUNTING TO BE SUCCESSFUL-THIS IS RISKY WITH NO ACCESS
- Frequency response will likely be degraded, as kinematic and Pseudo-kinematic supports are always less stiff
- THIS SHOULD BE ACCEPTABLE FOR THE B-LAYER, BUT I DO NOT RECOMMEND THIS FOR THE OTHER LAYERS WHERE ACCESS DURING ASSEMBLY IS AVAILABLE
- RIGIDITY OF REMAINING SUPPORTS SHOULD BE INCREASED
- B-LAYER STRUCTURE MUST BE RE-DESIGNED

B-LAYER SERVICE ROUTING

Cooling

- Tubes increase 20% from tdr
- Possibility to run staves in series
 - Maintains current Material Budget
- CAPILLARY TO FAR SIDE, UNIQUE EXHAUST
 - Doubles Tubing Material

Power

- STAVE ISSUES
 - NEED TO RESPECT 10MM BEAM PIPE STAYOUT
- PIGTAIL DESIGN
 - Power is higher
 - DROP MAY DOUBLE-BALANCED WITH MATERIAL INCREASE
- TRANSITION FROM TYPE I OR TYPE II
 - WILL COVER MORE TOMORROW

LOADS

- LOADS ESTIMATED ARE A LITTLE BEYOND MAXIMUM
 - 20 STAVES @75G/ALL SERVICES ONE SIDE+SINGLE STAVE PER EXHAUST
 - CABLES RESIZED FOR POWER INCREASE
- MAXIMAL SAG IN FORWARD 5MM
- Max in Pixels is 2mm
- SAG DURING ENGAGEMENT BECOMES VERY SMALL
- SUPPORT OF SERVICES REQUIRES FANOUT RING AT STEP LOCATIONS

PIXEL DETECTOR

E. ANDERSSEN LBNL/CERN

THERMAL BARRIER

- Want to Remove Thermal Barrier
 - PENETRATION THROUGH STRUCTURE HAS VERY BAD IMPLICATIONS FOR STRUCTURE.
 - REALLY NOT POSSIBLE TO SEAL ADEQUATELY
 - LESS MATERIAL
- Must solve another sealing problem
 - IN LESS CRITICAL AREA
- RISK IS DETECTOR WARM UP
 - SCT MUST BE FULLY INVOLVED IN THIS DECISION
 - TRT is influenced by leak of gasses-but this is already a problem

FORCES FROM SERVICES

BELLOWS

- ACT AS PISTONS
- 4mm ID Eq. has 0.8 Newtons per Bar
- IF ONE PER EXHAUST, THERE IS 5KG RADIAL FORCES

CABLES

- STRAIN RELIEF STRUCTURE 50MM AWAY IN GAP
- ONLY SMALL SPACE AVAILABLE FOR BENDING, BUT SHOULD BE OK
- CANNOT CALCULATE FORCE-NEED TO MAKE PHYSICAL MODEL TO TEST
- THIS CAN BE DONE WITH CABLE PROTOTYPES, AND ON SERVICE MOCK-UP BEING BUILT AT RAI

FIBER OPTICS

- FORCES ON DETECTOR NEGLIGIBLE, BUT FORCES ON FIBER MUST BE AVOIDED
- 20mm radius min-failure rate goes as 20th power of 1/R!
- MAY NEED TO INCLUDE METAL SLEEVES AT EXIT TO GUARANTEE BEND RADII-INDUSTRIAL SOLUTION
- Unforeseen structure may exert forces-need to work on this

SCT INTERFACE DOCUMENT

Work in Progress

- ERIC PERRIN WORKING ON SCT PART
 - STRUCTURAL INTERFACE TO INTERLINK
 - Possible integration of Pixel assembly tooling and SCT Barrel Insertion
 - FIRST GO THROUGH SEQUENCE OF ASSEMBLY-INCLUDES X-RAY SURVEY-TIES INTO WORK DONE ALREADY FOR SCT
- E! (NOT EP)
 - WORKING TO GET STRUCTURES ANALYZED TOGETHER AT RAL
 - STRUCTURAL INTERFACE
 - ENVELOPE DEFINITION
 - ENVIRONMENT
 - FAILURE SCENARIOS

WILL ACT AS EDITOR UNTIL COMPLETED

- SOLICITATION OF OTHER AUTHORS
- MARCO WILL FOLLOW THROUGH ON APPROVAL PHASE

